Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cell Death Dis ; 15(3): 210, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480690

RESUMO

In recent years, several studies described the close relationship between the composition of gut microbiota and brain functions, highlighting the importance of gut-derived metabolites in mediating neuronal and glial cells cross-talk in physiological and pathological condition. Gut dysbiosis may affects cerebral tumors growth and progression, but the specific metabolites involved in this modulation have not been identified yet. Using a syngeneic mouse model of glioma, we have investigated the role of dysbiosis induced by the administration of non-absorbable antibiotics on mouse metabolome and on tumor microenvironment. We report that antibiotics treatment induced: (1) alteration of the gut and brain metabolome profiles; (2) modeling of tumor microenvironment toward a pro-angiogenic phenotype in which microglia and glioma cells are actively involved; (3) increased glioma stemness; (4) trans-differentiation of glioma cells into endothelial precursor cells, thus increasing vasculogenesis. We propose glycine as a metabolite that, in ABX-induced dysbiosis, shapes brain microenvironment and contributes to glioma growth and progression.


Assuntos
Neoplasias Encefálicas , Glioma , Camundongos , Animais , Disbiose , Glioma/patologia , Antibacterianos/efeitos adversos , Encéfalo/metabolismo , Neoplasias Encefálicas/patologia , Microambiente Tumoral
2.
Toxics ; 12(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38535915

RESUMO

Due to its chemical properties, styrene is largely employed in the manufacturing of several products including rubber, polymers and resins, and it is particularly suitable for shipbuilding industry purposes. In this context, the main exposure to styrene occurs in occupational settings. Despite its widespread use, its long-term effects on human health at the occupational level are still unclear. The aim of this pilot study was to evaluate changes in styrene exposure biomarkers related to the metabolic and oxidative stress profiles in the urine of seventeen shipyard workers and seventeen non-exposed subjects. Urinary metabolites were assessed by means of NMR spectroscopy, including mandelic and phenylglyoxylic acids; four oxidative stress biomarkers, namely 8-oxo-7,8-dihydroguanine, 8-oxo-7,8-dihydroguanosine, and 8-oxo-7,8-dihydro-2'-deoxyguanosine and 3-nitrotyrosine, were evaluated via HPLC-MS/MS. The metabolic profiles of exposed workers showed both long- and short-term metabolic responses to styrene exposure compared to non-exposed subjects. From the comparison between non-exposed and before-shift workers, only 8-oxo-7,8-dihydroguanine and 8-oxo-7,8-dihydro-2'-deoxyguanosine levels were significantly different (long term exposure response). At the same time, comparing the non-exposed group with after-shift workers, we observed lower levels of pseudouridine and 1-methylnicotinamide and higher glutamine levels in after-shift workers. The comparison between before-shift and after-shift workers showed that 8-oxo-7,8-dihydroguanine significantly increased after the shift, suggesting its involvement in the exposure to styrene (short-term exposure response). The obtained results, although preliminary, allow us to lay the basis for further human studies aimed at establishing a global understanding of styrene metabolism.

3.
Fitoterapia ; 175: 105936, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38552807

RESUMO

In this work, the first specific phytochemical analysis on Odontites vulgaris Moench collected in Central Italy was performed. The aerial parts ethanolic extract was studied and eight compounds were identified: pheophytin a (1), aucubin (2), catalpol (3), shanzhiside methyl ester (4), melampyroside (5), 8-epi-loganin (6), caryoptoside (7) and quinic acid (8). To the best of our knowledge, in this study, compounds (7-8) resulted to be isolated from the genus for the first time. The chemophenetic markers of the family and order were evidenced and several important ecological conclusions could be drawn. The ethanolic extract was also tested for several biological activities showing high effects in the antioxidant, cytoprotective and aflatoxin B1 production inhibitory assays. A brief explanation on these activities under the phytochemical standpoint was also included.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38158534

RESUMO

The honey bee is an important pollinator insect susceptible to environmental contaminants. We investigated the effects of a waste fire event on elemental content, oxidative stress, and metabolic response in bees fed different nutrients (probiotics, Quassia amara, and placebo). The level of the elements was also investigated in honey and beeswax. Our data show a general increase in elemental concentrations in all bee groups after the event; however, the administration of probiotics and Quassia amara help fight oxidative stress in bees. Significantly lower concentrations of Ni, S, and U for honey in the probiotic group and a general and significant decrease in elemental concentrations for beeswax in the probiotic group and Li in the Quassia amara group were observed after the fire waste event. The comparison of the metabolic profiles through pre- and post-event PCA analyses showed that bees treated with different feeds react differently to the environmental event. The greatest differences in metabolic profiles are observed between the placebo-fed bees compared to the others. This study can help to understand how some stress factors can affect the health of bees and to take measures to protect these precious insects.

5.
Nat Prod Res ; : 1-6, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37904525

RESUMO

Pecan nuts (Carya illinoinensis (Wangenh.) K. Koch) contain the highest number of phytochemicals of all nuts, are a natural source of unsaturated fatty acids and other nutrients and can be considered an important addition to the Mediterranean diet al.though several studies have been carried out on pecans, employing several analytical techniques, no systematic study of the metabolic profile is available in literature. In this study, the metabolic profile of pecan nuts of three different cultivars was analysed by Nuclear Magnetic Resonance Spectroscopy. The cultivars compared were Wichita, Stuart, and Sioux, all grown in Italy in the same pedoclimatic conditions. 31 metabolites were identified and 28 were quantified and the three species were differentiated based on multivariate PCA analysis. The differences among them, and the levels of scutellarein and GABA, in particular, were attributed to the adaptation of the plants to the climate in their original areas.

6.
Nutrients ; 15(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37432172

RESUMO

BACKGROUND: Red beetroot is known to be a health-promoting food. However, little attention is placed on intestinal bioactive compound absorption. The aim of the study was to assess the urinary red beetroot juice (RBJ) intake biomarkers and possible differences in RBJ's micronutrient absorption at rest or after physical exercise. METHODS: This is a three-armed, single-blind study, involving seven healthy volunteers which were randomly divided into three groups and alternatively assigned to three experimental sessions: RBJ intake at rest, RBJ intake with physical activity, and placebo intake with physical activity. For each session, urine samples were collected before and 120, 180, and 240 min after the intake of RBJ or placebo. The same sampling times were employed for the experimental session at rest. The RBJ metabolic composition was also characterized to identify the urinary biomarkers derived from the intake. RESULTS: 4-methylpyridine-2-carboxylic acid, dopamine-3-O-sulfate, glutamine, and 3-hydroxyisobutyrate were identified as RBJ intake biomarkers. Physical activity significantly increased only the dopamine-3-O-sulfate excretion 120 min after RBJ intake. CONCLUSIONS: Urinary dopamine-3-O-sulfate is related to RBJ dopamine content, while 4-methylpyridine-2-carboxylic acid is a betanin or betalamic acid catabolite. The different excretions of these metabolites following physical activity suggest a possible effect on the RBJ uptake depending on different transport processes through the mucosa, namely diffusion-mediated transport for dopamine and saturable transcellular transport for betalamic acid derivatives. These results open new perspectives in improving the absorption of natural bioactive molecules through physical activity.


Assuntos
Dopamina , Exercício Físico , Humanos , Antioxidantes , Ácidos Carboxílicos , Método Simples-Cego , Sulfatos
7.
Metabolites ; 13(4)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37110200

RESUMO

An altered amino acid metabolism has been described in frail older adults which may contribute to muscle loss and functional decline associated with frailty. In the present investigation, we compared circulating amino acid profiles of older adults with physical frailty and sarcopenia (PF&S, n = 94), frail/pre-frail older adults with type 2 diabetes mellitus (F-T2DM, n = 66), and robust non-diabetic controls (n = 40). Partial least squares discriminant analysis (PLS-DA) models were built to define the amino acid signatures associated with the different frailty phenotypes. PLS-DA allowed correct classification of participants with 78.2 ± 1.9% accuracy. Older adults with F-T2DM showed an amino acid profile characterized by higher levels of 3-methylhistidine, alanine, arginine, ethanolamine, and glutamic acid. PF&S and control participants were discriminated based on serum concentrations of aminoadipic acid, aspartate, citrulline, cystine, taurine, and tryptophan. These findings suggest that different types of frailty may be characterized by distinct metabolic perturbations. Amino acid profiling may therefore serve as a valuable tool for frailty biomarker discovery.

8.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36077436

RESUMO

The most commonly used antiviral treatment against hepatitis C virus is a combination of direct-acting antivirals (DAAs) and ribavirin (RBV), which leads to a shortened duration of therapy and a sustained virologic response until 98%. Nonetheless, several dose-related side effects of RBV could limit its applications. This study aims to measure the urinary concentration of RBV and its main metabolites in order to evaluate the drug metabolism ability of HCV patients and to evaluate the adverse effects, such as anemia, with respect to RBV metabolite levels. RBV and its proactive and inactive metabolites were identified and quantified in the urine of 17 HCV males with severe liver fibrosis using proton nuclear magnetic resonance (1H-NMR) at the fourth week (TW4) and at the twelfth week of treatment (EOT). Four prodrug urinary metabolites, including RBV, were identified and three of them were quantified. At both the TW4 and EOT stages, six HCV patients were found to maintain high concentrations of RBV, while another six patients maintained a high level of RBV proactive metabolites, likely due to nucleosidase activity. Furthermore, a negative correlation between the reduction in hemoglobin (Hb) and proactive forms was observed, according to RBV-triphosphate accumulation causing the hemolysis. These findings represent a proof of concept regarding tailoring the drug dose in relation to the specific metabolic ability of the individual, as expected by the precision medicine approach.


Assuntos
Hepatite C Crônica , Hepatite C , Antivirais/efeitos adversos , Quimioterapia Combinada , Hepacivirus , Hepatite C/tratamento farmacológico , Hepatite C Crônica/tratamento farmacológico , Humanos , Masculino , Medicina de Precisão , Proteínas Recombinantes/farmacologia , Ribavirina/efeitos adversos , Resultado do Tratamento
9.
Front Plant Sci ; 13: 879076, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646045

RESUMO

In this study, we investigated the biostimulant effect of fungal culture filtrates obtained from Chaetomium globosum and Minimedusa polyspora on growth performance and metabolomic traits of chicory (Cichorium intybus) plants. For the first time, we showed that M. polyspora culture filtrate exerts a direct plant growth-promoting effect through an increase of biomass, both in shoots and roots, and of the leaf area. Conversely, no significant effect on morphological traits and biomass yield was observed in C. intybus plants treated with C. globosum culture filtrate. Based on 1H-NMR metabolomics data, differential metabolites and their related metabolic pathways were highlighted. The treatment with C. globosum and M. polyspora culture filtrates stimulated a common response in C. intybus roots involving the synthesis of 3-OH-butyrate through the decrease in the synthesis of fatty acids and sterols, as a mechanism balancing the NADPH/NADP+ ratio. The fungal culture filtrates differently triggered the phenylpropanoid pathway in C. intybus plants: C. globosum culture filtrate increased phenylalanine and chicoric acid in the roots, whereas M. polyspora culture filtrate stimulated an increase of 4-OH-benzoate. Chicoric acid, whose biosynthetic pathway in the chicory plant is putative and still not well known, is a very promising natural compound playing an important role in plant defense. On the contrary, benzoic acids serve as precursors for a wide variety of essential compounds playing crucial roles in plant fitness and defense response activation. To the best of our knowledge, this is the first study that shows the biostimulant effect of C. globosum and M. polyspora culture filtrates on C. intybus growth and metabolome, increasing the knowledge on fungal bioresources for the development of biostimulants.

10.
Toxics ; 10(5)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35622680

RESUMO

BACKGROUND: The objective of this study is to evaluate the effects of traffic on human health comparing biomonitoring data measured during the COVID-19 lockdown, when restrictions led to a 40% reduction in airborne benzene in Rome and a 36% reduction in road traffic, to the same parameters measured in 2021. METHODS: Biomonitoring was performed on 49 volunteers, determining the urinary metabolites of the most abundant traffic pollutants, such as benzene and PAHs, and oxidative stress biomarkers by HPLC/MS-MS, 28 elements by ICP/MS and metabolic phenotypes by NMR. RESULTS: Means of s-phenylmercaputric acid (SPMA), metabolites of naphthalene and nitropyrene in 2020 are 20% lower than in 2021, while 1-OH-pyrene was 30% lower. A reduction of 40% for 8-oxo-7,8-dihydroguanosine (8-oxoGuo) and 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodGuo) and 60% for 8-oxo-7,8-dihydroguanine (8-oxoGua) were found in 2020 compared to 2021. The concentrations of B, Co, Cu and Sb in 2021 are significantly higher than in the 2020. NMR untargeted metabolomic analysis identified 35 urinary metabolites. Results show in 2021 a decrease in succinic acid, a product of the Krebs cycle promoting inflammation. CONCLUSIONS: Urban pollution due to traffic is partly responsible for oxidative stress of nucleic acids, but other factors also have a role, enhancing the importance of communication about a healthy lifestyle in the prevention of cancer diseases.

11.
Commun Biol ; 5(1): 517, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35641653

RESUMO

Gut microorganisms and the products of their metabolism thoroughly affect host brain development, function and behavior. Since alterations of brain plasticity and cognition have been demonstrated upon motor, sensorial and social enrichment of the housing conditions, we hypothesized that gut microbiota and metabolome could be altered by environmental stimuli, providing part of the missing link among environmental signals and brain effects. In this preliminary study, metagenomic and metabolomic analyses of mice housed in different environmental conditions, standard and enriched, identify environment-specific microbial communities and metabolic profiles. We show that mice housed in an enriched environment have distinctive microbiota composition with a reduction in gut bacterial richness and biodiversity and are characterized by a metabolomic fingerprint with the increase of formate and acetate and the decrease of bile salts. We demonstrate that mice treated with a mixture of formate and acetate recapitulate some of the brain plasticity effects modulated by environmental enrichment, such as hippocampal neurogenesis, neurotrophin production, short-term plasticity and cognitive behaviors, that can be further exploited to decipher the mechanisms involved in experience-dependent brain plasticity.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Ácidos Graxos Voláteis , Formiatos , Metaboloma , Camundongos
12.
Artigo em Inglês | MEDLINE | ID: mdl-35270697

RESUMO

In recent studies, oxidative stress after scuba diving has been explored by measuring urinary biomarkers in volunteers under controlled conditions. Dive depth and duration, water temperature, and workload are all variables that can elicit metabolic responses. A controlled diving experiment was performed in an indoor pool at 20, 30, and 40 m depths at a water temperature of 32 °C, on three different days. Samples of urine from five male scuba divers were taken before diving and at four time points after diving, and then tested for their concentration of five different oxidative stress biomarkers by means of liquid chromatography tandem mass spectrometry and by 1H nuclear magnetic resonance metabolomics analysis. The results showed no variation in the five biomarkers after diving, but a decreasing trend was observed over the three days, with no differences among the three depths. The lack of effect on oxidative stress biomarkers has been attributed to the comfortable water temperature and to the absence of exercise in the divers during the experiment. Instead, an increase in hypoxanthine excretion, which can be considered a biomarker sensitive to hyperbaric exposure, was found after diving. Finally, the results suggest a physiological mechanism of metabolic adaptation to a new condition.


Assuntos
Mergulho , Ácidos Nucleicos , Biomarcadores/urina , Humanos , Hipoxantina , Masculino , Água
13.
Biomed Pharmacother ; 143: 112217, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34560544

RESUMO

Hepatitis C virus (HCV) infection induces a long-term inflammatory response and oxidative-stress in the liver microenvironment, leading to hepatic fibrosis and metabolic alterations. Direct-acting-antiviral-agents (DAAs) induce HCV-clearance, even though liver damage is only partially restored. In this context, understanding the impact of viral-eradication on liver metabolic activities could allow optimizing the metabolic care of the patient. The present prospective longitudinal study aims at characterizing the urinary metabolic profile of HCV-induced severe liver fibrosis and the metabolic changes induced by DAAs and HCV-clearance by nuclear magnetic resonance-based metabolomics. The urinary metabolic profile of 23 HCV males with severe liver fibrosis and 20 age-matched healthy-controls was analyzed by NMR-based-metabolomics before starting DAAs, at the end-of-therapy, after one and three months of follow-up. The urinary metabolic profile of patients with severe liver fibrosis was associated to pseudouridine, hypoxanthine, methylguanidine and dimethylamine, highlighting a profile related to oxidative damage, and to tyrosine and glutamine, related to a decreased breakdown of aromatic aminoacids and ammonia detoxification, respectively. 1-methylnicotinamide, a catabolic intermediate of nicotinamide-adenine-dinucleotide, was significantly increased in HCV-patients and restored after HCV-clearance, probably due to the reduced hepatic inflammation. 3-hydroxy-3-methylbutyrate, an intermediate of leucine-catabolism which was permanently restored after HCV-clearance, suggested an improvement of skeletal muscle protein synthesis. Finally, 3-hydroxyisobutyrate and 2,3-dihydroxy-2-methylbutyrate, intermediates of valine-catabolism, glycine and choline increased temporarily during therapy, resulting as potential biomarkers of DAAs systemic effects.


Assuntos
Antivirais/uso terapêutico , Hepatite C/tratamento farmacológico , Cirrose Hepática/tratamento farmacológico , Metaboloma , Metabolômica , Idoso , Biomarcadores/urina , Hepatite C/diagnóstico , Hepatite C/urina , Hepatite C/virologia , Humanos , Hidroxibutiratos/urina , Cirrose Hepática/diagnóstico , Cirrose Hepática/urina , Cirrose Hepática/virologia , Masculino , Pessoa de Meia-Idade , Niacinamida/análogos & derivados , Niacinamida/urina , Valor Preditivo dos Testes , Espectroscopia de Prótons por Ressonância Magnética , Índice de Gravidade de Doença , Resposta Viral Sustentada , Fatores de Tempo , Resultado do Tratamento , Urinálise
14.
Foods ; 10(8)2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34441664

RESUMO

Red beetroot (RB) is a well-known health-promoting food consumed worldwide. RB is commonly used in food processing and manufacturing thanks to the high content of components that can also be employed as natural coloring agents. These bioactive molecules vary their concentration depending on beetroot seasonality, harvest time and climate conditions. The first objective of this study was to evaluate the variation of the RB phytochemical profile related to the root development during three different harvest times, using an 1H-NMR-based metabolomic approach. Changes of carbohydrates and secondary metabolite concentrations were observed from July to September. Secondly, we compared the metabolic profiles of the final processed beet juices in three different production years to observe the effect of climate conditions on the RB's final product metabotype. A PCA analysis performed on juice extracts showed that production years 2016 and 2017 were characterized by a high content of choline and betaine, while 2018 by a high content of amino acids and dopamine and a low content of inorganic nitrates. This study suggests that the harvest time and roots growth conditions could be used to modulate the RB phytochemical profile, according to the final requirements of use, food or coloring agent source.

15.
J Transl Med ; 18(1): 49, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32014010

RESUMO

BACKGROUND: Despite the efficacy of immune checkpoint inhibitors (ICIs) only the 20-30% of treated patients present long term benefits. The metabolic changes occurring in the gut microbiota metabolome are herein proposed as a factor potentially influencing the response to immunotherapy. METHODS: The metabolomic profiling of gut microbiota was characterized in 11 patients affected by non-small cell lung cancer (NSCLC) treated with nivolumab in second-line treatment with anti-PD-1 nivolumab. The metabolomics analyses were performed by GC-MS/SPME and 1H-NMR in order to detect volatile and non-volatile metabolites. Metabolomic data were processed by statistical profiling and chemometric analyses. RESULTS: Four out of 11 patients (36%) presented early progression, while the remaining 7 out of 11 (64%) presented disease progression after 12 months. 2-Pentanone (ketone) and tridecane (alkane) were significantly associated with early progression, and on the contrary short chain fatty acids (SCFAs) (i.e., propionate, butyrate), lysine and nicotinic acid were significantly associated with long-term beneficial effects. CONCLUSIONS: Our preliminary data suggest a significant role of gut microbiota metabolic pathways in affecting response to immunotherapy. The metabolic approach could be a promising strategy to contribute to the personalized management of cancer patients by the identification of microbiota-linked "indicators" of early progressor and long responder patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Microbioma Gastrointestinal , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Humanos , Imunoterapia , Neoplasias Pulmonares/tratamento farmacológico , Metabolômica
16.
Front Nutr ; 7: 606171, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33425974

RESUMO

The global toll of type 1 diabetes (T1D) has steadily increased over the last decades. It is now widely acknowledged that T1D pathophysiology is more complex than expected. Indeed, a multifaceted interplay between genetic, metabolic, inflammatory and environmental factors exists that leads to heterogeneous clinical manifestations across individuals. Children with non-secretor phenotype and those affected by T1D share low abundance of bifidobacteria, low content of short-chain fatty acids, intestinal phosphatase alkaline and a high incidence of inflammatory bowel diseases. In this context, host-gut microbiota dyad may represent a relevant contributor to T1D development and progression due to its crucial role in shaping host immunity and susceptibility to autoimmune conditions. The FUT2 gene is responsible for the composition and functional properties of glycans in mucosal tissues and bodily secretions, including human milk. FUT2 polymorphisms may profoundly influence gut microbiota composition and host susceptibility to viral infections and chronic inflammatory disease. In this minireview, the possible interplay between mothers' phenotype, host FUT2 genetic background and gut microbiota composition will be discussed in perspective of the T1D onset. The study of FUT2-gut microbiota interaction may add a new piece on the puzzling T1D etiology and unveil novel targets of intervention to contrast T1D development and progression. Dietary interventions, including the intake of α-(1, 2)-fucosyl oligosaccharides in formula milk and the use of specific prebiotics and probiotics, could be hypothesized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA